主要是鋼材微觀結構上的瑕疵(defect)、差排(dislocation)受力移動的現象,
完美的晶格排列 |
材料中實際上存在的瑕疵,差排(Dislocation) |
圖片擷取自Youtube LearnCheme |
圖片來源:Wiki A是工程應變,B是真實應變 點 2 是降伏強度 點 1 是抗拉強度 點 3 是破裂點 |
數字1就是抗拉強度,
數字3是真正的破壞點。
那多出來的藍色線段是?
在測試的步驟上,要去量測即時的斷面尺寸是有困難的,
尤其是變形搞不好是發生在內部,外觀上根本量不到,
所以工程會選擇以剛開始測試時所量測到的斷面積當作基準計算應力,
也就是紅色的線段所代表的應力值,
但是實際上卻會因為拉伸時材料會產生側向收縮,斷面積會縮小,
若以真實縮小的斷面積去計算應力,
真實應力的值應該會比較大,也就是圖中的藍色線條。
鋼材的降伏情況其實在材料中算是特別的,
當受力超過降伏強度後,材料可承受的力量甚至會變小;
如果施加的力量大小沒變,鋼材甚至還會產生快速的移(滑)動,
也就是所謂的"降伏"現象,如上圖點 2 以後曲線向下凹陷的部分;
直到微觀結構上的滑動現象被晶粒界面等阻止,如下圖示:
圖片來源:PocketDentistry |
期間微觀結構上材料的這種現象又稱為應變硬化(Strain Hardening),
也就是應力應變曲線中點 2 以後曲線上翹的階段。
隨著斷面積慢慢變小,力量增加,直到點 1發生頸縮的現象,
點 1 是因為幾何上斷面積的縮小(頸縮)現象與材料的可承受應力剛好到一個臨界點,
材料會因為斷面積快速縮小而可承受力量快速下降而發生破壞,
雖然工程應力變小,但是從真實應力來看,
應變硬化的現象其實增強了材料抵抗變形的能力,
只是因為幾何變化(斷面積縮小)的關係造成可以承受的力量變小。
但是鋼材以外的材料很少會有降伏現象的發生,
其他延展性材料例如銅 、鋁等合金,應力-應變曲線圖比較多是像以下的圖形 :
其他材料因為沒有像鋼材有明顯的降伏現象,
但是因為設計上的需求,習慣以降伏點作為參考的依據,
所以對其他材料就給了以平行線性彈性線段偏移彈性極限(上圖點1)0.2%與應力-應變的曲線交點為降伏點,也就是上圖的點2。
有的設計會取比較保守的偏移0.1%,
當然也有的設計會取比較大膽的偏移0.5%,
就看設計上對抵抗塑性變形的要求有多高。
至於脆性材料,基本上可以說沒有塑性變形的現象:
圖片來源:Wiki |
所以設計上主要考慮的是降伏強度,
而且因為設備通常會動,或者是承受振動作用,負載屬於變動的型式,
經驗上會取降伏強度的一半作為抵抗疲勞破壞的設計考量。
但是如果是純靜態的一般結構或消費性用品,
使用降伏強度作為設計強度的考量會太浪費材料,而且增加產品或結構的重量,
所以設計上會改以抗拉強度為考慮。
在Inventor應力分析中,有關安全係數的計算,
就是以von Mises應力除以降伏強度或抗拉強度作計算,
可以在選擇材料時指定要用來計算安全係數的參考值,如下圖示:
參考資料:
鋼鐵材料與焊接實務,內容有很大篇幅在講材料機械性質的測試,值得對強度測試比較不熟的朋友看看。
Yield stress (YS) is the engineering way to define the onset of plastic deformation in terms of dislocation motion. The tensile strength (UTS) is (almost) the point at which necking initiates, i.e. plastic instability sets in. That means the geometric softening dominates the work-hardening beyond UTS. (You may be knowing for onset of necking; the 'Considere Criterion').
鋼鐵材料與焊接實務,內容有很大篇幅在講材料機械性質的測試,值得對強度測試比較不熟的朋友看看。
Yield stress (YS) is the engineering way to define the onset of plastic deformation in terms of dislocation motion. The tensile strength (UTS) is (almost) the point at which necking initiates, i.e. plastic instability sets in. That means the geometric softening dominates the work-hardening beyond UTS. (You may be knowing for onset of necking; the 'Considere Criterion').
Hence, the difference between UTS and YS (i.e., expressed by their ratio) tells you how much the material work-hardens. If it is large, work-hardening is more and the material is more ductile. Also this gives an indication for the resistance to crack propagation.
Relationship between YS and UTS: The ratio YS/UTS can be related to YS and one can calculate UTS by knowing YS, but it will have lower bound estimated values.
Certainly the yield stress measured by 0.2% offset strain method is "arbitrary" (answered by Prof. Germán Prieto/Prof. Pavel N. Yakushev ). While determining yield stress using tension test, to avoid dynamic effects, the rate of load application has to be slow (as answered by Prof. Tarik Ömer Oğurtani) such that it is quasi-static . But the rate of loading may vary with different materials. Further, this offset strain of 0.2% for yield stress is by ASTM, whereas in England, 0.1% and 0.5 % is commonly used. Essentially 0.2% offset method of yield stress gives reproducible values though it is an approximate measure (and accepted in engineering sense) of the transition form elastic to onset of plastic deformation. But for metals and alloys (e.g. mild steel) that display distinct yield point phenomenon (i.e., upper yield stress, lower yield stress and yield point elongation) due to dislocation -solute interactions, generally it is preferred to take the lower yield stress value, as this value is less sensitive to dynamic effects and is also conservative.
沒有留言:
張貼留言